* We propose 4x self-supervised learning objectives to support the observation representation within the RL
optimisation, finding multi-step latent forward dynamics to be most effective for our tactile-based agents
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* We show that tactile sensing provides distinct benefits over proprioceptive histories
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Open problem: how to effectively integrate tactile sensing into RL Idea: can self-supervision can help tactile agents? ' Result: self-supervision enables super-human tactile agents

e Robots must be able to feel the world to be truly useful and safely interact with humans * We wondered: are tactile-based agents are struggling to simultaneously learn the observation encoding, policy, and value function from e Best overall: forward dynamics (FD) objective (aka learn a world model ()
e The field of tactile learning faces many challenges: - ' ’ i i ' a single, scalar reward? . o , , . . . . -
& Y & tactile data Is sparse, discontinuous, and complex to interpret e We also experiment with increasing the SSL memory - sometimes agents can benefit from being trained on larger memories 3
-> integrating tactile data with RL yields conflicting results e Chicken and egg problem: - agents need a good observation representation to learn a good policy,

e Compared to RL-only agents (trained only with reward = ), the best SSL agents:

> the need for tactile sensing in robotics is hotly debatea -> agents need a good policy to visit useful states to learn a good observation representation

e First, we designed some new tasks that covered a wide range of tactile interactions (sparse, intermittent, sustained) and released them as:
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